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A 90° phase shifter can be constructed by either cascading two

4?: [l)hase slrllifters, or by dirlectly ahpplying theI syntr}esis tecfpnique. A Simple and Accurate MESFET Channel-Current
The latter will require a coupler with a nominal coupling coefficient . . . .

of 0 dB, which may be realized by means of a tandem connection Model Including Bias-Dependent Dispersion

of two —3.01-dB couplers, or in practice, four8.343-dB couplers. and Thermal Phenomena
Employing couplers identical to those used in the previous example
(i.e., Con, = —8.343 dB and AC,, = 0.862 dB) will result in

a differential phase shift of 9& 10°. The insertion loss will
ideally still be zero. However, due to the additional line length, the
total dielectric and ohmic losses are expected to almost double in

. . P Abstract—A new channel-current model of GaAs MESFET suitable
comparison to those of the 4phase shifter. Applications where thefOr applications to microwave computer-aided design (CAD) has been

input signal is to be simultaneously applied to both the input porg,ejoped. This model includes the frequency-dispersion effects due to
of a 90 phase shifter and the reference line will require the useaps and thermal effects. The model parameters are extracted from
of a power splitter. For these applications, a better option will beulsed I-V measurements at several ambient temperature and quiescent
to merely use a symmetrical widebar®.01-dB coupler as shown bias points. This _rr_lodel is verif_ied by simulating nonlinear circuits, such
in Fig. 1(a), where a differential phase shift of°9@nd negligible as a power amplifier and a mixer.
phase ripple between the signals at the coupled and through ports are
established intrinsically. I. INTRODUCTION

For microwave-circuit design, commercially available computer-
aided design (CAD) software is widely used. These CAD tools
are based on the accurate device models, and a proper modeling
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0.30 . : i : : an improved channel-current model is proposed as follows:
Vgso=2.1V,Vpgo=0.3V —=— ) u u
Vg§8=-2.5 v, V828=0,3 V o TIisnr = Blu +log(e"” 4+ e™")] tanh(awvgs)
0.25 | . VGSO='2.5 V, VDSO=5'0 V —a— L B ~ Vp — Ugs
Vp = "/po + Yvds, d= < — )
Vi
0.20 u=A(1l-d)-C (2)
Vb = Ubo + Vb, dso ¥ Viso

A=A, + Adeo * Vaso

3= Bo + Byso * Vyso + B x AT}
Y = Yo + Ydso * Vaso + yr x AT;
O = Qo + dso * Viso + ¥gso * Vo

AT; =Ry [(1-n)P, — Pyl + (T. - T}) 2

0.15

Ips (A)

whered represents the depletion width, which is a function of
d, A, and C can be interpreted as the active channel height. The
parametersu,, A, 3, v, and « are represented by quiescent bias
points and temperatures. The channel temperature differens&is
power-added efficiency,, thermal resistancé,;, dc input power,
Fig. 1. Comparison of experimental pulskd/ data (OKI KGF-1284 GaAs and ambient temperature of the deviEe and 7., at the operation
MESFET, Vgmin = =2.6 V, Vemax = —1.55 V, step= 0.15 V). condition, dc input power and ambient temperature of the delice
andT; in modeling procedure, respectively. The pinchoff voltage

) o is Vas dependent in order to represent the observed turn-on voltage
effects due to the internal power dissipation [6]-[8]. Howevetration with drain bias and to improve the output conductance

the dynamicl-V data from the pulsed measurements are strongescription. RepresentingV curve variations due to the quiescent
dependent on the quiescent bias conditions. An accurate drgiflisg Viso, Viso), and channel temperature\T;), the parameters
current model should be capable of predicting the dynamic currgpt ) are exgpressed as the first-order functions/af., Vi, and
behavior for different quiescent bias conditioni. ¢, Vaso). The - AT " For predicting drain quiescent bias effects, the parameters
dynamic channel currents can be modeled using the f|rst-orq9)rdwadm‘ﬁ,,,dm and A4.. are expressed as functions f.,. The
function of gate and drain quiescent voltagés;(ves, vas, Veso, gate quiescent bias effect can be predicted by the paraméters

Vaso)[4]- and ag... The channel pinchoff voltage and transconductance are

In this investigation, a new simple bias-dependent channel-currefifacted by the channel temperature and the effect is accounted
model is presented. This model represents all required characteristj5§,by the parameterss and 7. The internal power dissipation
i.e., frequency-dispersion effects, thermal phenomena, and higerine transistor in the modeling (pulsed measurement at quies-
order derivative terms ofas, which are important for predicting cent pias point) is different from the real RF-operation due to the

harmonic components [9]-[11]. The authors’ model is applied to thg: 1 RF conversion efficiencyn). This effect is considered by
design of a power amplifier and mixer, and its simulation Capabi'"i)‘]troducing .

is experimentally verified.

I1l. M ODELING AND EXPERIMENTAL RESULT

Il NEw CHANNEL-CURRENT MODEL INCLUDING In order to validate this paper's channel-current equation, a non-
BIAS-DEPENDENCY AND THERMAL PHENOMENA linear model has been extracted for OKI KGF-1284 MESFET. Using
For the modeling of the dynamic channel-currdnt(ves, vas, the optimization method, the parametérs,, v, A, C, 3,~, and
Vesor Vaso), pulsedl-V measurements should be performed at the in (1) are extracted from the pulsddV data at a quiescent bias
several quiescent bias conditiong,{,, Va..) due to the trapping point and an ambient temperature. The extracted parameters from
effect [1]-[5]. According to Filicori's results [4], only a weak the measured pulseldV data at different temperatures with a bias
correlation exists between the gate quiescent bias and the dnagint V.o = —2.2 V and Vyso = 3 V are shown in Table I.
quiescent bias effect. Thereforé;s can be modeled as a sepa-The temperature effect terms inand 3, represented by parameters
rated first-order function 0¥, and Vas.. The |-V curve of OKlI ~, and 3, are calculated from Table |. The extracted’s and
KGF-1284 GaAs MESFET's is measured at several bias points’s under the different quiescent bias points show similar values.
(shown in Fig. 1). This figure is obtained from measurementgom the pulsed—V data for several quiescent biases with the
at three different bias conditions with low,., and low V4., Same ambient temperature and internal-power dissipation, the seven
low Viso and high Vaeo, and high Vi, and low Vas.. All of  parameters in (1) are extracted. The gate quiescent bias dependency
these biases lead to different states of the traps with negligiparameters/,s., azso) and drain quiescent bias dependency param-
power dissipation. As the drain quiescent bias voltage increaseters s, dsos dso, Adso, Vaso) are calculated from the parameters
the dynamic output conductance increases and the channel-curfelidbwing the same procedure in the temperature-dependent parameter
decreases. The gate quiescent bias variation changes the magxtraction. Complete channel-current model parameters are shown
tude of channel current a little. These drain and gate quiescémtTable Il. Also, the nonlinear capacitors and linear elements in
bias effects are similar to the previously reported results [2], [4lhe large-signal model are extracted from the bias depenfient
[5]. parameters [12], [13]. The extracted complete large-signal model with
Another important issue of channel-current modeling is the capahannel-current equation and other parameters has been implemented

bility of representing temperature effects and higher order derivativesing the symbolic defined-device model (SDD) in HP-EEsof MDS.
of transconductance. Based on Pedro’s channel-current model [Hig. 2 compares the pulsed measurements with the model. The model
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TABLE |

PARAMETERS OF THE CHANNEL-CURRENT MODEL

FOR OKI KGF-1284

(Vgso = =22V, Vgoo =3 V)

Bias Condition (Vgso = 22 V, Vi = 3 V)
T, =25 TC T =45 TC | Ty =65 T
AT; =3 7C | 4T3 =23 T 4T =43 C
Vio -1.3565
Vb 0.1979
A 18.2723
C ~2.3326
5 0.025026 0.025250 0.0254762
y 0.080289 -0.078086 -0.075887
a 2.1533
0-25 L T T T T
Simulated
Measured =
0.20 B
3
—~ 015} 4
<
3
= 010t ]
0.05 |
M
0.00 :
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020 r b
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<
a
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Fig. 2. Measured and simulated pulskdV/ curves Vgmin = —2.6 V,
Vemax = —1.55 V, step= 0.15 V) (a) quiescent pointVys, = —2.2

V, Vaso = 3 V (b) quiescent point¥zeo = —2.0 V, Vyyo =4 V.

TABLE I
PARAMETERS OF THE COMPLETE CHANNEL-CURRENT MODEL
FOR OKI KGF-1284 (INCLUDING BlAs AND THERMAL EFFECTY

Vo -1.3565

Vb Vo - 0.3344, vpaso © —0.045527

A A, 17226, Ageo - 0.34834

C -2.3326

8 B,  0.023177, Beso * —825¢-4, Br ' 1.125¢ 5

y 7. t 005815, 74 ¢ 0.00749, yr : 1.10le-4

a a, 028499, ag, @ 0.11704, e, ° ~0.6721
S11 521 § |§

10 0 10
S12
0.2 0 0.2

Fig. 3. Measured and simulatef-parameter using large-signal model
(points: measured, lines: simulated) (OKI KGF-1284,., = —2.0 V,
Viso = 4V, frequency: 0.6-3 GHz).
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Fig. 4. Comparison of experimentdllj and simulated«) results for power
amplifier performance.

measured small-sign&l-parameters and simulation results using this
paper’s large-signal model in the frequency band from 0.6 to 3 GHz.
The transconductance and output resistance extracted fron§-the
parameter are 0.234, 42.22, and the same parameters extracted
from thel-V curve are 0.235, 44.3Q atVyso = —2.0 V, Vo = 4

V. These data confirm that the proposed model is very accurate.

A one-stage power amplifier has been fabricated with these MES-
FET's. Fig. 4 shows measured and simulation results of the two-tone
output power and M D for the input-power sweep from-6 to
4 dBm. At the frequency of 1750 MHz anths, = 4.2 V, the

is capable of reproducing the variations RV curve with the maximum differences of 3/ D3 and output power are 2 dB and
quiescent point very well. Fig. 3 shows the agreement between the dBm, respectively. Using the same methodology, a4®0wide
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of the conversion gain for the frequency range from 0.95 to 2.05

GHz. The maximum conversion-gain difference is less than 1 dB.

Conversion Gain (dB)

IV. CONCLUSION

In this paper, a very simple new-channel-current model has beetfw
proposed, which can represent the frequency-dispersion effects due to
traps, channel temperature effect, and higher order derivative terms of
I4s. The derivative terms are important for predicting nonlinear circuit
performance. The model parameters are extracted from the guléed
measurements at several ambient temperatures and quiescent biggsiract—A concentric waveguide junction consisting of an elliptic
points. The extraction procedure is straightforward and simple. Waveguide has been formulated using the mode-matching method. The
order to validate this model, a large-signal model has been extractedhulation is a generalized solution of the problem such that the second
for OKI KGF-1284 and Kukje MESFET. The extracted large-signa¥@veguide, which forms the junction, can be any regular shape in

. - . crpss section. Exact closed-form expressions for computing the coupling
MESFET models have been implemented using SDD in HP'EEsiﬂ egrals have been obtained from the generalized formulation. As a

MDS. By comparing the pulsel-V and S-parameter measurementsspecial case of the general solution, the expressions for evaluating the cou-
with simulation results, the accuracy of this model was verified. Thiding integrals of rectangular-to-elliptic, circular-to-elliptic, and elliptic-
model has also been applied to the design of nonlinear circuits stietglliptic waveguide junction are given. Theoretical results compare well
as power amplifiers and mixers. The harmonic-balance simulatiof&? the experimental and published results.

with the proposed model and the experimental results for fabricatedndex Terms—Elliptic waveguide, mode-matching method, waveguide
circuits confirm the accuracy of the proposed modeling. junction.

o-Port Scattering at an Elliptic-Waveguide Junction

Kin-Lung Chan and Sunil R. Judah
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